Question 4:

A metallic particle is accelerated in a magnetic field such that its velocity over time is defined by the function $v(t)=4 t^{2}-12$, where time is in seconds and velocity is in meters per second. If we assume that the particle has an initial position of zero ($x_{0}=0$), what are the equations that describe the acceleration and position over time?

$$
V(t)=4 t^{2}-12
$$

$a(t)=\frac{d V(t)}{d t}=8 t$
$a(t)=8 t$

$$
x(t)=\int V(t) d t=\frac{4}{3} t^{3}-12 t+4 / \quad x(0)=0
$$

$$
x(t)=\frac{4}{3} t^{3}-12 t
$$

