Chapter 5 Equilibrium
What is the tension in the cable?
What are the horizontal and vertical components of the reaction at pin A?
The system is in equilibrium.
The pulley at D is frictionless.
Ignore the mass and thickness of the beam.
You must draw a clear free body or force diagram for full marks.

d1 $=5.00$ feet
$\mathrm{d} 2=5.00 \mathrm{ft}$
$\mathrm{d} 3=3.00 \mathrm{ft}$
The suspended cylinder weight is 80.0 lb

The tension in the cable is the same through the whole cable, so the tension at B is the same as tension where it attaches to the beam. So the tension can be found by summing the moments around A .

Sum of the moments around $A=0$
$G+\Sigma \mathrm{M}_{\mathrm{A}}=0 \mathrm{lb}-\mathrm{ft}$

$$
T(5)+T\left(\frac{2}{\sqrt{5}}\right)(10)-80(13)=0
$$

$\mathrm{T}=74.583 \mathrm{lb}=74.6 \mathrm{lb}$
Sum of the forces in the horizontal or x direction is zero.
$\rightarrow+\Sigma \mathrm{F}_{\mathrm{x}}=0 \mathrm{lb}$
$A_{x}-T\left(\frac{1}{\sqrt{5}}\right)=0$
$A_{x}-74.583\left(1 / 5^{0.5}\right)=0$
$\mathrm{A}_{\mathrm{x}}=33.4 \mathrm{lb}$
Sum of the forces in the vertical or y direction is zero.
Up is positive

Assume that the reaction force at A is down. If the guess is wrong then you will get a negative number.
$\uparrow+\Sigma \mathrm{F}_{\mathrm{y}}=0 \mathrm{lb}$
$\mathrm{T}+\mathrm{T}\left(2 / 5^{0.5}\right)$ - (weight of cylinder) $-\mathrm{A}_{\mathrm{y}}=0$
$T-T\left(\frac{2}{\sqrt{5}}\right)-80-A_{y}=0$
$\mathrm{A}_{\mathrm{y}}=61.3 \mathrm{lb}$
Similar to Problem 5-16 from H
Solution by Jennifer Kirkey, Douglas College, November 2021. CC0 Image from UBC MECH OER

Image in USask Module 2 file. STATICS-
RBSE01-01-02-c73

