Question 6:

Three soda cans, each weighing . 75 lbs and having a dimeter of 4 inches, are stacked in a formation as shown below. Assuming no friction forces, determine the normal forces acting on can B.

Calculations:

$$
\begin{gathered}
\sum F_{x}=F_{A B} \cos (51.3)-F_{A C} \cos (51.3)=0 \\
F_{A B}=F_{A C} \\
\sum F_{y}=F_{A B} \sin (S 1.3)+F_{A C} \sin (51.3) \\
-.7 S=0 \\
E_{A B}=F_{A C}=.48 \mathrm{lb},
\end{gathered}
$$

$$
\begin{aligned}
& \sum F_{x}=F_{R X}-.48 \cos (51.3)=0 \\
& \sum F_{Y}=F_{R Y}-.7 \mathrm{~s}-.48 \sin (51.3)=0 \\
& F_{R X}=.30 \mathrm{lbs} \\
& F_{R Y}=1.125 \mathrm{lbs}
\end{aligned}
$$

Solution:

$$
\begin{array}{ll}
F_{S}=.75 \mathrm{lbs} & F_{R X}=.30 \mathrm{lbs} \\
F_{A B}=.48 \mathrm{lbs} & F_{R Y}=1.125 \mathrm{lbs}
\end{array}
$$

