A car ($m_{c}=2000 \mathrm{~kg}, d_{3}=3 \mathrm{~m}, d_{4}=1.5 \mathrm{~m}$) is driving on an icy road (assume frictionless road surface). It is unable to stop at an intersection and impacts a bus ($m_{B}=8000 \mathrm{~kg}, d_{1}=9 \mathrm{~m}, d_{2}=2.5 \mathrm{~m}$). The initial vehicle velocities are $\overrightarrow{v_{c 1}}=5 \mathrm{~m} / \mathrm{s} \hat{\jmath}$ and $\overrightarrow{v_{B 1}}=10 \mathrm{~m} / \mathrm{s} \hat{\imath}$. Assume the impact is such that the vehicles corners contact at A, and the plane of contact is $\theta=0^{\circ}$. Find the angular velocity of each vehicle just after impact, $\vec{\omega}_{C 2}$ and $\vec{\omega}_{B 2}$, if the impact is completely plastic at A. Assume the car and the bus can be treated as constant density objects.

Conservation of momentum (both linear and angular) for the SYSTEM (impact impulse is internal)
state just betore impact

$$
\begin{aligned}
\text { state just before impact } \\
\vec{V}_{C 1}
\end{aligned}
$$

$$
\begin{aligned}
\text { state 2 just affer impact } \\
\vec{V}_{C 2 Y}
\end{aligned}
$$

cons. of lin. + ang mamentum $1 \rightarrow 2$:

$$
\begin{equation*}
\text { in } x: \quad m_{B} v_{B 1}=m_{B} v_{B 2 x}+m_{C} v_{C 2 x}=80000 \tag{2}
\end{equation*}
$$

$$
\text { in x: } \quad m_{B} v_{B 1} \quad m_{C} v_{C 1}=m_{B} v_{B 2 Y}+m_{C} v_{C 2 Y}=10000
$$

about: $\quad K_{A}=I_{C} \omega_{C 2}+1.5 m_{C} v_{C 2 X}-0.75 m_{C} v_{C 2 Y}-I_{B} w_{B 2}$

$$
\begin{align*}
\text { bout: } \quad K_{A 1}= & I_{C} w_{C 2}+1.3 m_{C} \tag{3}\\
& -1.25 m_{B} V_{B 2 X}+4.5 m_{B} V_{B 2 Y}=-107500
\end{align*}
$$

3egn's
unthavns: $V_{B 2 x}, V_{B 2 y}, V_{C 2 x}, V_{C 2 y}, w_{C 2}, w_{B 2}$ (6)
kinematics: since impact is plastic $\nabla_{A, B 2}=\vec{V}_{A, C 2}$

$$
\begin{aligned}
\vec{v}_{A, B 2} & =\vec{v}_{B_{2}}+\vec{\omega}_{B 2} \times \vec{r}_{A / B} \quad \vec{r}_{A / B}=-4.5 \hat{\imath}-1.25 \hat{\jmath} \\
& =V_{B 2} \times \hat{\imath}+v_{B 2 Y} \hat{\jmath}+4.5 \omega_{B 2} \hat{\jmath}-1.25 \omega_{B 2} \hat{\imath} \\
\vec{v}_{A, C 2} & =\vec{v}_{C 2}+\vec{\omega}_{C 2} \times \vec{r}_{A / C} \quad \vec{r}_{A / C}=0.75 \hat{\imath}+1.5 \hat{\jmath} \\
& =v_{C 2 x} \hat{\imath}+v_{C 2 Y} \hat{\jmath}-1.5 \omega_{C 2} \hat{\imath}+0.75 \omega_{C 2} \hat{\jmath}
\end{aligned}
$$

$\vec{V}_{A}=\vec{V}_{A}$ (plastic, moving together)
$\imath: \quad v_{B 2 X}-1.25 \omega_{B 2}=v_{C 2 X}-1.5 \omega_{C 2}$
no new untrinowns (6)
$\hat{\jmath}: v_{B 2 Y}+4.5 \omega_{B 2}=v_{C 2 Y}+0.75 \omega_{C 2}$
\rightarrow cons. of linear momentum in x ONLY for bus.

$\int \vec{F}_{I} d t$ in $\hat{\jmath}$ only, lin momentum conserved in $\hat{\imath}$ for bus

$$
\begin{equation*}
v_{B 1}=v_{B 2 X}=10 \mathrm{~m} / \mathrm{s} \tag{6}
\end{equation*}
$$

6 eqn \Rightarrow solve.
6 unknown
(1): $80000=m_{B} v_{B 2 X}+m_{C} v_{C 2 X} \quad V_{B 2 X}=V_{B 1}=10 \mathrm{~m} / \mathrm{s}$
+(6) $80000=(8000)(10)+m_{C} V_{C 2 X} \Rightarrow V_{C 2 X}=0$
(2):

$$
\begin{aligned}
& 10000=8000 v_{B 2 Y}+2000 v_{C 2 Y} / 2000 \\
& \Rightarrow 5=4 v_{B 2 Y}+v_{C 2 Y} \Rightarrow v_{C 2 Y}=5-4 v_{B 2 y}
\end{aligned}
$$

(3): $-107500=I_{C} \omega_{C 2}+1.5 m_{c} v_{c 2 x}{ }^{0}-0.75 m_{C} v_{C 2 y}-I_{B} \omega_{B 2}$ + (1) + (6)

$$
\begin{gathered}
-1.25 m_{B} V_{B 2 X}^{P}+4.5 \mathrm{~V}_{B 1} V_{B 2 Y} \\
I_{C}=\frac{1}{12}(2000)\left(3^{2}+1.5^{2}\right)=1875 \mathrm{~kg}-\mathrm{m}^{2} \\
I_{B}=\frac{1}{12}(8000)\left(9^{2}+2.5^{2}\right)=58167 \mathrm{~kg}-\mathrm{m}^{2} \\
\Rightarrow-107500=1875 \omega_{C 2}-1500 v_{C 2 Y}-58167 \mathrm{w}_{B 2} \\
\quad-100000+36000 v_{B 2 Y} \\
\Rightarrow \quad-7500=1875 \omega_{C 2}-1500 v_{C 2 Y}-58167 \omega_{B 2}+36000 v_{B 2 Y}
\end{gathered}
$$

(4)
$+(1)+(6):$

$$
\begin{aligned}
& v_{B 2 x}^{V_{B 1}}-1.25 \omega_{B 2}=V_{C_{2 x}^{P}}^{0}-1.5 \omega_{C 2} \\
& \quad \Rightarrow 10-1.25 \omega_{B 2}=-1.5 \omega_{C 2}
\end{aligned}
$$

(5):
(3) + (2):

$$
\begin{aligned}
:-7500 & =1875 \omega_{C 2}-1500\left(5-4 v_{B 2 Y}\right)-58167 \omega_{B 2}+36000 v_{B 2} y \\
-7500 & +5(1500)=1875 \omega_{C 2}-58167 \omega_{B 2}+(36000+4(1500)) v_{B 2 Y} \\
0 & =1875 \omega_{C 2}-58167 \omega_{B 2}+42000 v_{B 2 Y}
\end{aligned}
$$

(5) ${ }^{\text {(2) }}: \quad v_{B 2 Y}+4.5 \omega_{B 2}=\left(5-4 v_{B 2 Y}\right)+0.75 \omega_{C 2}$

$$
\Rightarrow 5 v_{B 2 Y}=5-4.5 \omega_{B 2}+0.75 \omega_{C 2}
$$

$$
\rightarrow v_{B Z Y}=1-\frac{4.5}{5} \omega_{B 2}+\frac{0.75}{5} w_{C Z}
$$

(5) \Rightarrow (3):

$$
\begin{aligned}
& \text { 3): } \quad 0=1875 \omega_{C 2}-58167 \omega_{B 2}+42000\left(1-\frac{4.5}{5} \omega_{B 2}+\frac{0.75}{5} \omega_{C 2}\right) \\
& -42000=(1875+6300) \omega_{C 2}-(58167+37800) \omega_{B 2}
\end{aligned}
$$

$$
\begin{aligned}
-42000 & =8175 \omega_{C 2}-95967 \omega_{B_{2}} \\
10 & \left.=-1.5 \omega_{C 2}+1.25 \omega_{B_{2}}\right)
\end{aligned}
$$

$$
\frac{54500=-8175 \omega_{02}+6812.5 \omega_{B_{2}}}{12500=0-89154.5 \omega_{B_{2}}}
$$

$$
\left.\Rightarrow \omega_{B_{2}}=-0.140 \mathrm{rad} / \mathrm{s}\right)
$$

$$
\omega_{C_{2}}=\frac{1}{-1.5}\left(10-1.25 \omega_{B_{2}}\right)=-6.78 \mathrm{rad} / \mathrm{s}
$$

$\vec{\omega}_{B 2}=0.14 \mathrm{rad} / \mathrm{s} \hat{k}$
$\vec{\omega}_{C 2}=-6.78 \mathrm{rad} / \mathrm{s} \hat{k}$

