A collar which is pinned to rod $C D$ slides along rod $A B$. At the instant shown, when $\phi=60^{\circ}$, the angular velocity of $\operatorname{rod} A B$ is $2 \mathrm{rads} / \mathrm{s}$ in the direction shown. Find the rate at which C travels along $\operatorname{rod} A B$, and the angular velocity of rod $C D$. Assume $d_{1}=0.3 \mathrm{~m}$ and $d_{2}=0.2 \mathrm{~m}$.

$$
\begin{aligned}
& \vec{V}_{c}=\vec{Y}_{A}^{0}+\underline{\vec{\omega}_{A B}} \times \vec{\Gamma}_{C / A}+\underline{\left.\underline{V_{C / A}}\right)_{r e l}} \\
& \vec{\omega}_{A B}=2 \mathrm{rad} / \mathrm{s}^{\prime} \\
& \vec{r}_{C / A}=0.3 \mathrm{~m} \hat{c}^{\prime} \\
& \left(\vec{v}_{C A}\right)_{\text {rel }}=\left(v_{C / A}\right)_{\text {rel }} \hat{l}^{\prime} \\
& \Rightarrow \vec{V}_{c}=\underbrace{2 \cdot 0.3 \mathrm{~m} / \mathrm{c}}_{0.6 \mathrm{~m} / \mathrm{s}} \mathrm{j}^{\prime}+\left(V_{c / A}\right) \mathrm{rel} \hat{\mathrm{l}}^{\prime} \\
& 0.2 \mathrm{~m} \text {. } \boldsymbol{\prime}^{\prime} \overrightarrow{n_{2}}=\vec{\omega}_{A C} \\
& \vec{V}_{C}=\vec{V}_{D}^{0}+\vec{\omega}_{C D} \times \vec{r}_{C / D} \quad \text { Assume } \vec{\omega}_{C D}=\omega_{C D}{ }^{k^{\prime}} \\
& \vec{r}_{C / D}=0.2\left(-\cos 30 \hat{v}^{\prime}-\sin 30 \hat{\jmath}^{\prime}\right) \\
& \Rightarrow \vec{V}_{C}=\omega_{C D} \cdot 0.2\left(-\cos 30 \jmath^{\prime}+\sin 30 \hat{\imath}^{\prime}\right) \\
& \vec{V}_{c}=\vec{V}_{c}
\end{aligned}
$$

components

$$
\begin{aligned}
& \hat{\imath}^{\prime}:\left(v_{C / A}\right)_{\text {rel }}=0.2 \omega_{C D} \sin 30 \\
& \hat{\jmath}^{\prime}: 0.6=0.2 \omega_{C D}(-\cos 30) \Rightarrow \omega_{C D}=\frac{-3}{\cos 30} \\
& \vec{\omega}_{C D}=\frac{-3}{\cos 30} \\
& \Rightarrow\left(v_{C / A}\right)_{\text {rel }}=0.2\left(\frac{-3}{\cos 30}\right) \sin 30 \\
&\left(\vec{v}_{C / A}\right)_{r e l}=-0.6 \tan 30 \hat{\imath}^{\prime}
\end{aligned}
$$

