Problem 1 [20 Marks] Body ACD is pinned at A and is rotating with an angular velocity of $\omega=3 \mathrm{rad} / \mathrm{s}$ (as shown) at this instant. Bar BE slides through tube CD , such that, at this instant, the velocity of B is purely in the $\hat{\jmath}$-direction, and the acceleration of $B$ is zero (as observed from the fixed frame). Find the vectors for the velocity and acceleration of B in the rotating frame, $\left(\vec{v}_{B / A}\right)_{x \prime y^{\prime} z^{\prime}}$ and $\left(\vec{a}_{B / A}\right)_{x^{\prime} y^{\prime} \prime}$, , and the angular acceleration of ACD, $\vec{\alpha}$, at this instant. Distance $d_{1}=0.5 \mathrm{~m}$. [Reminder include vector directions and units in your answer].


$$
\text { Known: } \quad\left(\vec{V}_{B} / A\right)^{\prime} y^{\prime} z^{\prime}=\left(\vec{V}_{B} / A\right)_{\text {rel }}
$$

$\left(\vec{V}_{B / A}\right)_{x^{\prime} y^{\prime} z^{\prime}}$ in $x$-dir only $\left(\vec{a}_{B / A}\right) x^{\prime} y^{\prime} z^{\prime}$ in $x$-dir only $\omega=-3 \mathrm{rad} / \mathrm{s}^{\hat{k}}$ $\vec{r}_{B / A}=-0.5 \hat{\imath}-0.5 \hat{\jmath}$

$$
\vec{V}_{B}=V_{B} \hat{\jmath}
$$

$\vec{V}_{B}=\vec{\gamma}_{A}^{\nexists}+\vec{\Omega} \times \vec{r}_{B / A}+\left(\vec{V}_{B / A}\right) x^{\prime} y^{\prime} z^{\prime}$

$$
\vec{a}_{B}=0
$$

$$
\begin{aligned}
& V_{B} \hat{\jmath}=-3 \hat{k} \times(-0.5 \hat{\imath}-0.5 \hat{\jmath})+\left(V_{B / A}\right)_{x} \\
& V_{B} \hat{\jmath}=1.5 \hat{\jmath}-1.5 \hat{\imath}+\left(V_{B / A}\right)_{x} \cdot y^{\prime 2} \hat{\imath}
\end{aligned}
$$

Components:

$$
\begin{aligned}
& \hat{\imath}: 0=-1.5+\left(V_{B A A}\right)_{x} y^{\prime} z^{\prime} \Rightarrow\left(\vec{v}_{B / A}\right)_{x^{\prime} y^{\prime} z^{\prime}}=1.5 \mathrm{~m} / \mathrm{s} \hat{\imath} \\
& \hat{\jmath}: v_{B}=1.5 \quad \vec{V}_{B}=1.5 \mathrm{~m} / \mathrm{s} \hat{\jmath}
\end{aligned}
$$

$$
\begin{aligned}
& 0=\alpha \hat{k} \times(-0.5 \hat{\imath}-0.5 \hat{\jmath})-(-3 \mathrm{rod} / \mathrm{s})^{2}(-0.5 \hat{\imath}-0.5 \hat{\jmath}) \\
& \text { Page } 2 \text { of } 10 \text { pages } \\
& +2\left(-3 \mathrm{rad} / \mathrm{s}^{\text {公 }}\right) \times 1.5 \mathrm{~m} / \mathrm{s} \hat{\imath}+\left(a_{B / A}\right) x^{\prime} y^{\prime} z^{\prime} \hat{\imath}
\end{aligned}
$$

$$
0=-0.5 \alpha \hat{\jmath}+0.5 \alpha \hat{\imath}+4.5 \hat{\imath}+4.5 \hat{\jmath}-9 \hat{\jmath}+\left(a_{B / A}\right)_{x^{\prime} y^{\prime} 2^{\prime}-\hat{\imath}}
$$

Problem 1 continued

$$
\begin{aligned}
& \text { Components: } \\
& \hat{\imath}: 0=0.5 \alpha+4.5+\left(a_{B / A}\right) x^{\prime} y^{\prime} z^{\prime} \\
& \hat{\jmath}: 0=-0.5 \alpha+4.5-9 \\
& \Rightarrow 0.5 \alpha=-4.5, \alpha=-9 \\
& \text { Fr. } \hat{\imath} \Rightarrow\left(\vec{\alpha}=-9 \mathrm{rad} / \mathrm{s}^{2} \hat{k}\right.
\end{aligned}
$$

