A camera drone, D, flies over a car race in a curved trajectory (centre O) with a constant groundspeed velocity of $v_{D}=9 \mathrm{~m} / \mathrm{s}$. At the moment shown, car C is travelling with velocity of $v_{C}=12 \mathrm{~m} / \mathrm{s}$ and an acceleration of $a_{c}=2 \mathrm{~m} / \mathrm{s}^{2}$ as shown. Assume $d_{1}=7.5 \mathrm{~m}, d_{2}=3 \mathrm{~m}$.
a) Find the velocity of the car as observed by the camera on drone D at this instant.
b) Find the acceleration of the car as observed by the camera on drone D at this instant.

$$
\begin{aligned}
& \vec{V}_{C}=\vec{V}_{D}+\vec{\Omega} \times \vec{r}_{C / D}+\left(\vec{V}_{C} / D\right)_{r e l} \\
& v_{C} \hat{\jmath}=v_{D} \hat{\jmath}+\omega_{D} \hat{k} \times d_{2}(-\hat{\imath})+\left(\vec{v}_{C / D}\right)_{v e l} \\
& 12 \mathrm{~m} / \mathrm{s} \hat{\jmath}=9 \mathrm{~m} / \mathrm{s} \hat{\jmath}-(1.2 \mathrm{rad} / \mathrm{s})(3 \mathrm{~m}) \hat{\jmath}+\left(\vec{v}_{c} / \mathrm{D}\right)_{\mathrm{rcl}} \\
& \left.\vec{V}_{C} / D\right)_{\text {rel }}=6.6 \mathrm{~m} / \mathrm{s} \hat{j} \\
& \vec{a}_{C}=\vec{a}_{D}+\dot{\vec{R}} \times \stackrel{\rightharpoonup}{r}_{C / D}^{0}-\Omega^{2} \vec{r}_{C / D}+2 \vec{\Omega} \times\left(\vec{v}_{C} / D\right)_{r a l}+\left(\vec{a}_{C / D}\right)_{m=1} \\
& 2 \mathrm{~m} / \mathrm{s}^{2} \hat{\jmath}=-\omega_{D}^{2}{\underset{\hat{\imath}}{1}}_{\left.\hat{\imath}-\omega_{D}^{2} \underset{\sim}{\left(-d_{2}\right.} \hat{\imath}\right)+2\left(\omega_{D} \hat{k}\right) \times(6.6 \hat{\jmath})+\left(\vec{a}_{C} / D\right) r_{\mathrm{rcl}}}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\vec{a}_{C / D}\right)_{r=1}=(22.32 \hat{\imath}+2 \hat{\jmath}) \mathrm{m} / \mathrm{s}^{2}
\end{aligned}
$$

