A ladder is propped up against a wall as shown below. If the base of the ladder is sliding out at a speed of 2 m / s, what is the velocity of the COG of the ladder (at the mid-point)?

Find \vec{V}_{G}

$$
\vec{v}_{B}=\vec{\omega}_{A B} \times \vec{r}_{B / C C} \quad \vec{r}_{B / C C}=-4 m \hat{\jmath}
$$

$2 \hat{\imath} \mathrm{~m} / \mathrm{s}=\omega_{A B} \hat{k} \times-4 \hat{\jmath} \mathrm{~m}$

$$
\begin{aligned}
\vec{V}_{G} & =\vec{\omega}_{A B} \times \vec{r}_{G / I C} \quad \vec{r}_{G / C C}=(-1.5 \hat{\imath}-2 \hat{\jmath}) \mathrm{m} \\
& =0.5 \mathrm{rad} / \mathrm{s} \hat{k} \times(-1.5 \hat{\imath}-2 \hat{\jmath}) \mathrm{m} \\
\vec{V}_{G} & =(1 \hat{\imath}-0.75 \hat{\jmath}) \mathrm{m} / \mathrm{s}
\end{aligned}
$$

