Two rods, $A B$ and $B C$, are connected and moving. A pin at point A follows the vertical slot shown. Find the ICZV for each rod at the instant shown. If rod $B C$ has an angular velocity of $3 \mathrm{rad} / \mathrm{s}$, find the angular velocity of rod $A B$.
$\vec{\omega}_{A B}$?
Assume $\vec{\omega}_{A B}=\omega_{A B} \hat{k}$

$$
\begin{aligned}
& \vec{V}_{B}=\vec{\omega}_{B C} \times \vec{r}_{B / C} \\
& \vec{w}_{B C}=3 \mathrm{rad} / \mathrm{s} \hat{k} \\
& \vec{r}_{B / C}=0.1 \mathrm{~m} \hat{\jmath} \\
& \vec{V}_{B}=3 \hat{k} \times 0.1 \hat{\jmath} \\
&=-0.3 \mathrm{~m} / \mathrm{s} \hat{\imath}
\end{aligned}
$$

$$
\begin{aligned}
\vec{v}_{B} & =\vec{\omega}_{A B} \times \vec{r}_{B / I C} \\
& =\omega_{A B} \hat{k} \times 0.2 \frac{\sqrt{3}}{\sqrt{2}}(-\hat{\jmath}) \\
& =0.2 \frac{\sqrt{3}}{\sqrt{2}} \omega_{A B} \hat{\imath}
\end{aligned}
$$

$$
\begin{aligned}
\vec{V}_{B} & =\vec{V}_{B} \\
& -0.3 y=0.2 \frac{\sqrt{3}}{\sqrt{2}} \omega_{A B} y \\
\Rightarrow \omega_{A B} & =-\frac{0.3}{0.2} \frac{\sqrt{3}}{\sqrt{2}}=-1.22 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

$$
\stackrel{\rightharpoonup}{w}_{A B}=-1.22 \mathrm{rod} / \mathrm{s} \hat{k}
$$

