The robotic arm from the previous problem is in the configuration shown below. Assume that theta is currently 30 degrees and that point C currently lies along the x axis. If we want the end effector at C to travel 1 ft / s in the negative x direction, what should the angular velocities be at joints A and B ?

Find $\vec{\omega}_{A B}{ }_{j}^{1} \vec{w}_{B C}$

$2 \mathrm{ft} \sin \phi=1.5 \mathrm{ft}$

$$
\Rightarrow \phi=48.6^{\circ}
$$

split into components

$$
\begin{aligned}
& \hat{\imath}:-1=-3 \omega_{A B} \sin 30+2 \omega_{B C} \sin 48.6 \\
& \hat{\jmath}: 0= 3 \omega_{A B} \cos 30+2 \omega_{B C} \cos 48.6 \\
& \text { from } \hat{\jmath}:-3 \omega_{A B} \cos 30=2 \omega_{B C} \cos 48.6 \\
& \Rightarrow \omega_{A B}=\frac{-2 \cos 48.6}{3 \cos 30} \omega_{B C}=-0.51 \omega_{B C} \\
& \text { subinto } \hat{\imath}:-1=3 \sin 30\left(-0.51 \omega_{B C}\right)+2 \omega_{B C} \sin 48.6 \\
&-1=0.76 \omega_{B C}+1.5 \omega_{B C}=2.26 \omega_{B C}
\end{aligned}
$$

Known:

$$
\begin{aligned}
& \vec{V}_{A}=0 \\
& \vec{V}_{C}=-1 \mathrm{ft} / \mathrm{s} \hat{\mathrm{~L}} \\
& \vec{r}_{B / A}=3(\cos 30 \hat{\imath}+\sin 30 \hat{\jmath}) \mathrm{ft}
\end{aligned}
$$

Assume positive

$$
\begin{aligned}
& \vec{\omega}_{A B}=\omega_{A B} \hat{k} \\
& \vec{\omega}_{B C}=\omega_{B C} \hat{k} \\
& \vec{r}_{C / B}=2(\cos 48.6 \hat{\imath}-\sin 48.6 \hat{\jmath}) \mathrm{ft}
\end{aligned}
$$

$$
\begin{aligned}
\vec{V}_{B} & =\vec{\gamma}_{A}^{0}+\vec{\omega}_{A B} \times \vec{r}_{B / A} \\
\vec{V}_{C} & =\vec{V}_{B}+\vec{\omega}_{B C} \times \vec{r}_{C / B} \\
& =\vec{\omega}_{A B} \times \vec{r}_{B / A}+\vec{\omega}_{B C} \times \vec{r}_{C / B} \\
-1 \mathrm{ft} / \mathrm{s} \hat{\imath} & =\omega_{A B} \hat{k} \times(3 \cos 30 \hat{v}+3 \sin 30 \hat{\jmath})^{f t}+\omega_{B C} \hat{k} \times(2 \cos 48.6 \hat{\imath}-2 \sin 48.6 \hat{\jmath}) \hat{f} \\
-1 \mathrm{ft} / \mathrm{s} \hat{c} & =3 \omega_{A B} \cos 30 \hat{\jmath}-3 \omega_{A B} \sin 80 \hat{\imath}+2 \omega_{B C} \cos 48.6 \hat{\jmath}+2 \omega_{B C} \sin 48.6 \hat{\jmath}
\end{aligned}
$$

$$
\begin{gathered}
\Rightarrow \omega_{B C}=-0.44 \mathrm{rad} / \mathrm{s} \\
\vec{\omega}_{B C}=-0.44 \mathrm{rad} / \mathrm{s} \hat{\mathrm{~b}}
\end{gathered}
$$

from \hat{j} :

$$
\begin{aligned}
\omega_{A B} & =-0.51 \mathrm{\omega} \omega_{B C} \\
& =0.23 \mathrm{rad} / \mathrm{s} \\
\vec{\omega}_{A B} & =0.23 \mathrm{rad} / \mathrm{s} \hat{\mathrm{~b}}
\end{aligned}
$$

