What is the velocity and acceleration of a point, P, on the read/write head of a hard drive? The actuator arm that supports the head has an angular velocity of 40 rad /s clockwise, and an angular acceleration of $200 \mathrm{rad} / \mathrm{s}^{2}$ counter-clockwise. The actuator arm is at 60 degrees above the horizontal at this instant and the distance from P to the arm axle is $\underline{3.5}$ cm.

$\vec{\omega}=-40 \mathrm{rad} / \mathrm{s} \hat{\mathrm{h}}^{\mathrm{k}}$

$$
\bar{\alpha}=200 \mathrm{rad} / \mathrm{s}^{2} \hat{k}
$$

$$
\begin{aligned}
\stackrel{\rightharpoonup}{V}_{P} & =\stackrel{\rightharpoonup}{\omega} \times \vec{r}_{P / Q}=-40 \mathrm{rod} / \hat{\kappa} \hat{k} \times 0.035(\cos 60 \hat{\imath}+\sin 60 \hat{\jmath}) m \\
& =-40(0.035) \cos 60 \hat{\jmath}+40(0.035) \sin 60 \hat{\imath}
\end{aligned}
$$

$$
\vec{v}_{p}=(1.21 \hat{\imath}-0.7 \hat{\jmath}) \mathrm{m} / \mathrm{s}
$$

$$
\begin{aligned}
\vec{a}_{P}= & \vec{\alpha} \times \vec{r}_{P / Q}-\omega^{2} \vec{r}_{P / Q} \\
= & 200 \mathrm{rad} / \mathrm{s}^{2} \hat{k} \times 0.035(\cos 60 \hat{\imath}+\sin 60 \hat{\jmath}) \mathrm{m} \\
& \quad-(-40 \mathrm{rad} / \mathrm{s})^{2} 0.035(\cos 60 \hat{\imath}+\sin 60 \hat{\jmath}) \mathrm{m} \\
= & 200(0.035) \cos 60 \hat{\jmath}-200(0.035) \sin 60 \hat{\imath} \\
& \quad-1600(0.035) \cos 60 \hat{\imath}-1600(0.035) \sin 60 \hat{\jmath} \\
= & 3.5 \hat{\jmath}-6.1 \hat{\imath}-28 \hat{\imath}-48.5 \hat{\jmath} \\
\vec{a}_{P}= & (-34.1 \hat{\imath}-45.0 \hat{\jmath}) \mathrm{m} / \mathrm{s}^{2}
\end{aligned}
$$

